Search Results

Documents authored by Gamard, Guilhem


Document
Rice-Like Theorems for Automata Networks

Authors: Guilhem Gamard, Pierre Guillon, Kevin Perrot, and Guillaume Theyssier

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
We prove general complexity lower bounds on automata networks, in the style of Rice’s theorem, but in the computable world. Our main result is that testing any fixed first-order property on the dynamics of an automata network is either trivial, or NP-hard, or coNP-hard. Moreover, there exist such properties that are arbitrarily high in the polynomial-time hierarchy. We also prove that testing a first-order property given as input on an automata network (also part of the input) is PSPACE-hard. Besides, we show that, under a natural effectiveness condition, any nontrivial property of the limit set of a nondeterministic network is PSPACE-hard. We also show that it is PSPACE-hard to separate deterministic networks with a very high and a very low number of limit configurations; however, the problem of deciding whether the number of limit configurations is maximal up to a polynomial quantity belongs to the polynomial-time hierarchy.

Cite as

Guilhem Gamard, Pierre Guillon, Kevin Perrot, and Guillaume Theyssier. Rice-Like Theorems for Automata Networks. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 32:1-32:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gamard_et_al:LIPIcs.STACS.2021.32,
  author =	{Gamard, Guilhem and Guillon, Pierre and Perrot, Kevin and Theyssier, Guillaume},
  title =	{{Rice-Like Theorems for Automata Networks}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{32:1--32:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.32},
  URN =		{urn:nbn:de:0030-drops-136770},
  doi =		{10.4230/LIPIcs.STACS.2021.32},
  annote =	{Keywords: Automata networks, Rice theorem, complexity classes, polynomial hierarchy, hardness}
}
Document
Determining Sets of Quasiperiods of Infinite Words

Authors: Guilhem Gamard and Gwenaël Richomme

Published in: LIPIcs, Volume 58, 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)


Abstract
A word is quasiperiodic if it can be obtained by concatenations and overlaps of a smaller word, called a quasiperiod. Based on links between quasiperiods, right special factors and square factors, we introduce a method to determine the set of quasiperiods of a given right infinite word. Then we study the structure of the sets of quasiperiods of right infinite words and, using our method, we provide examples of right infinite words with extremal sets of quasiperiods (no quasiperiod is quasiperiodic, all quasiperiods except one are quasiperiodic, ...). Our method is also used to provide a short proof of a recent characterization of quasiperiods of the Fibonacci word. Finally we extend this result to a new characterization of standard Sturmian words using a property of their sets of quasiperiods.

Cite as

Guilhem Gamard and Gwenaël Richomme. Determining Sets of Quasiperiods of Infinite Words. In 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 58, pp. 40:1-40:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gamard_et_al:LIPIcs.MFCS.2016.40,
  author =	{Gamard, Guilhem and Richomme, Gwena\"{e}l},
  title =	{{Determining Sets of Quasiperiods of Infinite Words}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{40:1--40:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Faliszewski, Piotr and Muscholl, Anca and Niedermeier, Rolf},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2016.40},
  URN =		{urn:nbn:de:0030-drops-64540},
  doi =		{10.4230/LIPIcs.MFCS.2016.40},
  annote =	{Keywords: combinatorics on Words, quasiperiodicity, Sturmian words}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail